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This material serves as a supplementary technical document, so we suppose readers have read the original
article. Some notation will not be repeated and share the same definition if it is not being mentioned again.

1 Extended Shape tensor and deformation tensor

We will first show that the extended shape tensor Ki is non-singular, so that deformation gradient can be
calculated as Eq.(15) in the article.

1.1 Non-singularity of Extended Shape Tensor

Silling and Lehoucq [3] demonstrate that if the deformation is sufficiently smooth, the peridynamic stress
tensor converges to a Piola-Kirchhoff stress tensor, which is a function only of the local deformation gradient
tensor, as in the classical theory. Originally, the 3× 3 deformation gradient tensor Fi has

Fi =

∑
j

ωij(yj − yi)(xj − xi)
T

K−1
i , (1)

the 3× 3 shape tenson Ki calculated as

Ki =
∑
j

ωij(xj − xi)(xj − xj)
T , (2)

where ω is a scalar non-negative state acting as a weighting function, x,y represented the rest shape and
currently deformed shape.

As for a co-dimensional membrane/plane model, it is possible that the rest shape remains to lay on a
plane of R3. Denoted the plane as

v +X (3)

where v is a transform and X is hyperplane with two chosen orthonormal vector bases in R3 as e1, e2
(distincted from the conventional orthonormal vector bases of R3, e.g., e1 = (1, 0, 0)T , which are
not necessarily or able to be chosen for the hyperplane we discussed above), then we have X = {q1e1 +
q2e2|∀q1, q2 ∈ R}, and R3 = X ⊕ X⊥,X ∩ X⊥ = ∅, where X⊥ is the orthogonal complement space of
X, and ⊕ denotes the direct sum operator. It is simple to show that, with the concept of orthogonal
complement space and direct sum, by denoting the orthonormal vector base of X⊥ as e3, we then have
X⊥ = {q3e3|∀q3 ∈ R, e3 = ±e1 × e2}, since only e3 = ±e1 × e2 provides orthogonality to e1 and e2 with
unit length. To make a convention, we use the defininition of e3 = e1 × e2.

Extended shape tensor

Ki =
∑
j

ωij(xj − xi)(xj − xi)
T + x⊥

i ⊗ x⊥
i , (4)

where x⊥
i = ξnorm

(∑
J θJnJ∑
J θJ

)
, J denotes triangle contained vertex i with index J , θJ is the inner angle of

triangle J at vertex i, nJ is the normal of triangle J represented as norm
(
(x2

J − x0
J)× (x1

J − x0
J)
)
, where the

superscript (·){1,2,3} denotes three related vertexes in triangle and norm(·) denotes normalization operator.
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We use {x} to denote all vertexes in the neighborhood of vertex i on rest shape, and {y} on the deformed
shape. The adjacency relation is chosen as 1-neighborhood, which means that {x} collects all vertexes
connected to vertex i with an edge, so that any vertex in {x} will be in a triangle which contain vertex
i. (The generality will not get limited by such neighborhood chosen, since if a minimal neighborhood can
guarantee the non-singularity of shape tensor, so does an expanded one). As {x} is a point set, {x− xi} :=
{x− xi|∀x ∈ {x}} provides the corresponding vector set. With the above illustration, if neighbors of vertex
i lay on a plane, the Eq. (3) can be describe as (xi − o) +Xi, where Xi is the spanning space of {x − xi}
and o the original point. Also we have Xi is a hyperplane of R3, i.e. ∀u ∈ Xi = {q1e1 + q2e2|∀q1, q2 ∈ R}.
An illustrative diagram on Fig. 1 will outline such case.
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Figure 1: Illustrative diagram of the co-dimensional case.

We show that, in this case, the extended shape tensor is non-singluar.
On the other hand, we also show that if {x − xi} span R3, the extended shape tensor will also keep its

non-singluarity.
We use some mathematical convention if not mentioned, e.g., ⊗ the Kronecker product and concepts on

linear algebra.
Given Eq. (4), we proof the following two lemmas:

Lemma 1 span({x − xi}) := Xi = {q1e1 + q2e2|∀q1, q2 ∈ R}, then we have span({x − xi} ∪ {x⊥
i }) = R3,

as x⊥
i is given to be x⊥

i = ξnorm
(∑

J θJnJ∑
J θJ

)
.

Proof. Because of the adjacency relationship chosen above, we have that the collection set of vertexes of any
triangle J which contain vertex i is the same as {x} ∪ {xi} (See the diagram and the above discussion for
an outline). Then we have nJ = norm

(
(x2

J − x0
J)× (x1

J − x0
J)
)
, the superscript denotes inner vertexes of

triangle and they also in set {x}∪{xi}. If x0
J = xi, then we will always have (x2

J−x0
J) ∈ {x−xi}, (x1

J−x0
J) ∈

{x−xi}. If x0
J is not xi, then we will have, i.e., like x2

J = xi, then (x2
J −x0

J) ∈ span({x−xi}), (x2
J −x1

J) ∈
span({x− xi}), and thus x1

J − x0
J = (x1

J − x2
J)− (x0

J − x2
J) ∈ span({x− xi}).

This gives the edges of triangle J , i.e., ed(·) := x
(·)
J − x0

J ∈ span({x − xi}), so that ed1 = q11e1 + q21e2,
ed2 = q12e1 + q22e2. Then nJ = norm(ed1 × ed2) = norm((q11e1 + q21e2) × (q12e1 + q22e2)) = norm((q11q

2
2 −

q21q
1
2)e3). As the term (q11q

2
2 − q21q

1
2) is the determinant, i.e., double area of the planar triangle, if the

triangle keeps non-degenerated, then this term will keep non-zero. If all triangle degenerated to a segment,
then the co-dimensional material will remain to be a line, which is not the cases we design. Then we have
nJ = norm((q11q

2
2 − q21q

2
1)e3) = e3. Here our primitive are manipulated through an algorithm to keep the

vertex and triangle norm remain outer.
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Then following x⊥
i = ξnorm(

∑
J θJnJ/

∑
J θJ), it is simply to verify that x⊥

i = ξe3, so that we have
span({x− xi} ∪ {x⊥

i }) = R3.
□

Lemma 2 Spectral Representation.
Given a vector set (with n vectors) {ui} spanning R3, i.e., span({ui}) = R3 = {q1e1+q2e2+q3e3|∀q1, q2, q3 ∈
R}, its generated second-order tensor U =

∑n
i=1 ωiui ⊗ ui, ωi > 0 has spectral representation as U =∑3

k=1 λknk ⊗ nk, where λk ̸= 0 and {n1,n2,n3} are orthonormal vertor basis.

Proof. As
∑n

i=1 ωiui ⊗ui is a real-symmetric matrix, it has spectral representation (from spectral theorem)

as
∑n

i=1 ωiui ⊗ ui =
∑3

k=1 λknk ⊗ nk, where {nk} are three orthonormal vectors. We have to show that
each λk ̸= 0. When {ui} spanning R3, we have ui = (e1, e2, e3)qi = E ·qi, where E = (e1, e2, e3) are chosen
orthonormal vertor basis and qi are the coordinate of ui at such basis. We then have:

∑n
i=1 ωiui ⊗ ui =

E (
∑n

i=1 ωiqi ⊗ qi)E
T .

Now, consider if exists λk = 0. Then we have
(∑3

k=1 λknk ⊗ nk

)
·nk = 0,nk ̸= 0 and

(∑n
i=1 ωiui⊗ui

)
·

nk = 0. Expresses nk as nk = E · qk in vector basis E and its coordinate qk. The above equation becomes:

E

(
n∑

i=1

ωiqi ⊗ qi

)
ET ·E · qk = 0, (5)

which gives: E
(∑n

i=1 ωiqi ⊗ qi

)
· qk = 0. Because E is a vector basis matrix of R3, the only solution exists

that E · q = 0 as q = 0, so that we must have
(∑n

i=1 ωiqi ⊗ qi

)
· qk = 0 .

Now, we denote N =
∑n

i=1 ωiqi ⊗ qi and show that N · qk = 0, if and only qk = 0 or ∀qi,qk · qi =
0. Firstly, the sufficient condition is simple: if qk = 0, then it is obviously to show N · qk = 0 and if
∀qi, qi · qk = 0, then N · qk = 0.

Now we want to show the necessary condition: if N · qk = 0, then qk = 0 or ∀qi, qi · qk = 0. Assume
qk ̸= 0 and there exists some {qi} s.t. qi · qk ̸= 0, then we at most choose three orthonormal vectors, s.t.
q1 · qk ̸= 0,q2 · qk ̸= 0,q3 · qk ̸= 0 to represent qi. Denoted qi = αiq1 + βiq2 + γiq3, we then have:

N · qk =

(
n∑

i=1

ωi(αiq1 + βiq2 + γiq3)⊗ (αiq1 + βiq2 + γiq3)

)
· qk

=

n∑
i=1

ωiαi(qi · qk)q1 +

n∑
i=1

ωiβi(qi · qk)q2 +

n∑
i=1

ωiγi(qi · qk)q3 = 0,

(6)

which gives three parameter equations of q1,q2,q3 correspondingly to be zero, since q1,q2,q3 are chosen
orthonormal.

We look at the equations (also remind ωi > 0):
∑n

i=1 ωiαi(qi · qk) = 0∑n
i=1 ωiβi(qi · qk) = 0∑n
i=1 ωiγi(qi · qk) = 0.

(7)

Case 1. If {qi} lays on span({q1}) (this chosen of one basis does not limit general cases), then αi ̸=
0, βi = 0, γi = 0. As

∑n
i=1 ωiαi(qi · qk) =

∑n
i=1 ωiα

2
i (q1 · qk) = 0, which gives q1 · qk = 0. Then we have

qi · qk = 0.
Case 2. If {qi} lays on span({q1,q2}) (this chosen of two basises does not limit general cases), then

γi = 0. Then we will have :{∑n
i=1 ωiα

2
i (q1 · qk) +

∑n
i=1 ωiαiβi(q2 · qk) = 0∑n

i=1 ωiαiβi(q1 · qk) +
∑n

i=1 ωiβ
2
i (q2 · qk) = 0.

(8)

If
∑n

i=1 ωiαiβi = 0, then we have q1 · qk = 0,q2 · qk = 0, since {qi} lays on span({q1,q2}) gives that
∃qi,qj , s.t. αi, βj ̸= 0 and thus

∑
i ωiα

2
i > 0,

∑
i ωiβ

2
i > 0. If

∑
i ωiαiβi ̸= 0, the above equation can be

deduced as
(
(
∑

i ωiαiβi)
2 − (

∑
i ωiα

2
i )(
∑

i ωiβ
2
i )
)
· (q2 · qk) = 0. As the first term is a classical equation
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which gives
(
(
∑

i ωiαiβi)
2 − (

∑
i ωiα

2
i )(
∑

i ωiβ
2
i )
)
= 0 if and only if ∀i, αi = βi, then we have {qi} lays on

space spanning by a single vector q1 + q2, which is discussed on Case 1. Then we have the equation has to
stand for other cases with arbitrary ωi, αi, βi gives q1 · qk = 0,q2 · qk = 0. Then we have qi · qk = 0.

Case 3. If qi lays on span({q1,q2,q3}), the above equation set with three equations has unique solution,
since qk has three unknowns, then the number of equations is the same as the number of unknowns. It is
simple to verify that this unique solution is qk = 0. Then we have qi · qk = 0.

Now we have already verified that N · qk = 0 if and only if qk = 0 or ∀qi, qi · qk = 0. As {ui} span R3,
then its coordinate {qi} on vector basis E also span R3, which means that ∀qi, qi · qk = 0 gives qk = 0.

Above Eq. (5) we assume that there exist λk = 0. By showing that qk = 0 uniquely, which means that

the solution of (
∑n

i ωiui ⊗ ui)n = 0 only have zero trivial solution n = 0, so that U =
∑3

k=1 λknk ⊗ nk is
of full rank. Then the assumption of existing λk = 0 is not stand. So we have λk ̸= 0,∀k = 1, 2, 3.

□

Theorem 1 For a 3× 3 second-order tensor of U = λ1n1 ⊗ n1 + λ2n2 ⊗ n2 + λ3n3 ⊗ n3, where n1,n2,n3

are orthonormal vector basis and λk ̸= 0, k = 1, 2, 3. Then the tensor is non-singular, with inverse U−1 =
λ−1
1 n1 ⊗ n1 + λ−1

2 n2 ⊗ n2 + λ−1
3 n3 ⊗ n3.

Proof. Yet simple to verify UU−1 = U−1U = I, where I is the 3× 3 identity matrix.
□

From Lem. (1), Lem. (2) and Theo. (1), it is shown that as if the vertex neighborhood remains to be of
full dimension, i.e., either by extending the neighborhood with x⊥

i or the neighborhood originally keeping full
dimension (e.g., of some complex configuration embeded in R3), then our extended shape tensor will always
keep its non-singularity (from Lem. (2) and Theo. (1)), so that its inverse K−1

i exists. The full-dimensional
(extended) neighborhood has been a sufficient condition. So even if original shape tensor has already kept
non-singularity, adding the x⊥

i ⊗ x⊥
i part will not change this.

In the next section, we show that, such extension will also guarantee rest and affine transform stability.

1.2 Rest and Rigid-body deformation stability for the Extended Deformation
Gradient

Extended deformation gradient

Fi =

∑
j

ωij(yj − yi)(xj − xi)
T + y⊥

i ⊗ x⊥
i

K−1
i . (9)

We shown that, if the deformation configuration {y} = {x}, which should give Fi = I, and the affine
transform configuration {y} = R{x}+ v, where R is a rotational matrix and v a movement, which should
gives Fi = R.

When {y} = {x}, Di :=
(∑

j ωij(yj − yi)(xj − xi)
T + y⊥

i ⊗ x⊥
i

)
is exactly the same as Ki, so that we

will simply get Fi = DiK
−1
i = KiK

−1
i = I.

When {y} = R{x}+ v, yj − yi = R(xj − xi). Now we look at the extended term y⊥
i ⊗ x⊥

i . As

x⊥
i = ξnorm

(∑
J θJnJ∑
J θJ

)
,y⊥

i = ξnorm

(∑
J θ′Jn

′
J∑

J θ′J

)
, (10)

where ξ represents the thickness of the membrane measured from surface to the mid-surface; J is the in-
dex of all neighboring triangles; θJ is inner angle of triangle J with apex of vertex i; nJ is the triangle
normal, and norm(·) is used to normalize a vector. The superscript ′ for θ and n is used to denote quan-
tities in the deformed configuration. As θJ remains to be unchanged through affine transform, the only
condition we have to verify is that ∀J, n′

J = RnJ . Then we have: n′
J = norm

(
(y2

J − y0
J)× (y1

J − y0
J)
)
=

norm
(
(R(x2

J − x0
J))× (R(x1

J − x0
J))
)
= norm

(
R
(
(x2

J − x0
J)× (x1

J − x0
J)
))

= R norm
(
(x2

J − x0
J)× (x1

J − x0
J)
)

from basic vertor analysis rule, where the superscript (·){1,2,3} denotes three related vertex in triangle.
Together we have

Di =
(∑

j ωij(yj − yi)(xj − xi)
T + y⊥

i ⊗ x⊥
i

)
=
(∑

j ωijR(xj − xi)(xj − xi)
T +Rx⊥

i ⊗ x⊥
i

)
= RKi.

Then we have Fi = DiK
−1
i = R.
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2 Handle Contact Through Local Projection

2.1 Step Length of Gradient Method

In this section we will analysis how to choose step length λ to guarantee descending of the objective function
in local step, i.e.,

B(zm + λg) < B(zm) (11)

where

B(z) :=

(∑
i

1

2

∥∥zi − yk
i

∥∥2
2
+ µ

∑
c

Bc(z)

)
, B(d(z)) =

{
−(d− d̂)2 log(d

d̂
), 0 < d < d̂

0, d ≥ d̂
. (12)

For such barrier energy function modeling the contact, since it is at least second-order smooth when actived
(when 0 < d < d̂), the first-order partial derivative and second-order partial derivative are calculated and
can be refered from [1](Supplement A) as:

∂B(d)

∂d
:= B′(d) = −

(
2(d− d̂) log

(
d

d̂

)
+

(d− d̂)2

d

)
< 0, (13)

and
∂2B(d)

∂d2
:= B′′(d) = −

(
2 log

(
d

d̂

)
+ (d− d̂)

d̂+ 3d

d2

)
> 0, (14)

for 0 < d < d̂. After the mapping of d̂IJ = dIJ − ξ, show on Fig. (9) and Eq. (51), we have both d,

−B′ = |B′| and B′′ get bounded, as ⌊d⌋ = εξ,
⌈
|B′(d)|

⌉
= 2(d̂ − εξ) log

(
d̂
εξ

)
+ (εξ−d̂)2

εξ and ⌈B′′(d)⌉ =

2 log
(

d̂
εξ

)
+ (d̂− εξ) d̂+3εξ

(εξ)2 , where ⌊·⌋ denotes the lower bound and ⌈·⌉ denotes the upper bound.

We start to show that, the above condition makes the objective function B has a Lipschitz continuous
gradient with constant L as the Lipschitz parameter, so that a fixed step with constant step length λ can
be chosen as if 0 < λ ≤ 1/L to guarantee convergency. We would like to provide generally definition and
theorem and then look inside to the previous contact problem.

Definition 1 L-smooth Function.
A function f has a Lipschitz continuous gradient with constant L > 0, when

∥∇f(x)−∇f(y)∥2 ≤ L ∥x− y∥2 , ∀x,y ∈ Rn.

We denote this kind function as C1
L(Rn) and L-smooth function.

Theorem 2 For any f ∈ C1
L(Rn), we have:

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
∥y − x∥22 , ∀x,y ∈ Rn.

Since the proof of Theo. (2) can be found in any Mathematical Analysis textbook, we would like to show it
directly.

Theorem 3 Fixed step convergency for gradient method.
For gradient method and a L-smooth objective function f ∈ C1

L(Rn), GM guaranteed to converge for any
0 < λ ≤ 1/L, i.e.,

x+ = x− λ∇f(x),

f(x+) ≤ f(x), ∀λ, 0 < λ ≤ 1/L.
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Since the proof of Theo. (3) can also be found in any optimization textbook, here we woule like to provide
a yet simple proof.

Proof. Consider a single iteration
x+ = x− λ∇f(x).

Then for any x ∈ Rn and λ ∈ (0, 1/L], we have:

f(x+) ≤ f(x) +∇f(x)T (x+ − x) +
L

2

∥∥x+ − x
∥∥2
2

(Theo. (2))

= f(x) +∇f(x)T (−λ∇f(x)) +
Lλ2

2
∥∇f(x)∥22

≤ f(x)− λ ∥∇f(x)∥22 +
λ

2
∥∇f(x)∥22

= f(x)− λ

2
∥∇f(x)∥22

≤ f(x).

□
Following the above theorem, the question remains to be, how to find L constant for our objective function

B. As B is second-order differentialable, then we have L = max(|λi|) =
∥∥∇2B

∥∥
2
, ∀λi are the eigenvalue of

∇2B, deduced from the inequation ∥∇B(y)−∇B(x)∥2 ≤
∥∥∇2B

∥∥
2
· ∥y − x∥2.

Look inside to the Hessian of the objective function B, since the gradient method is done for each vertex
zi, we only need to estimate a maximal absolute eigenvalue of Hessian derivative for each zi, then we can
get an upper bound of the step length.

As
∇zi

B =− gi

=− µ
∑
I

αi
I

[
(dIJ − d̂)2

dIJ
+ 2(dIJ − d̂) log

(
dIJ

d̂

)]
norm(dIJ)− yk

i + zi

=µ
∑
I

αi
IB

′(dIJ) norm(dIJ)− yk
i + zi,

(15)

where αi
I represents the barycentric coordinate for vertex i in triangle I, and dIJ = αi

Izi + αj
Izj + αk

Izk −
αa
Jza − αb

Jzb − αc
Jzc, where (i, j, k) and (a, b, c) are the corresponding vertex indexes of triangle I and J .

Here we explicitly describe the proximal directional distance dIJ because we will then make derivative of zi
on it. The proximal distance length dIJ = ∥dIJ∥2, and norm(dIJ) = dIJ/dIJ . Then we have

∇2
zi
B = µ

∑
I

αi
I

(
B′′(dIJ)

∂dIJ
∂zi

⊗ norm(dIJ) +B′(dIJ)
∂ norm(dIJ)

∂zi

)
+ I, (16)

where I is an identity matrix of dimension zi×dimension zi, i.e., 3×3, and ⊗ denotes the Kronecker product.
As we have (which can be found in [2] or simply make deduction)

∂dIJ
∂zi

=
∂dIJ
∂dIJ

· ∂dIJ

∂zi
= αi

Inorm(dIJ),

∂ norm(dIJ)

∂zi
=

∂ norm(dIJ)

∂dIJ
· ∂dIJ

∂zi
=

αi
I

dIJ

(
I− norm(dIJ)⊗ norm(dIJ)

)
,

which gives:

∇2
zi
B = µ

∑
I

αi
I

(
B′′(dIJ)

∂dIJ
∂zi

⊗ norm(dIJ) +B′(dIJ)
∂ norm(dIJ)

∂zi

)
+ I

=

(
µ
∑
I

(αi
I)

2B
′(dIJ)

dIJ
+ 1

)
I+ µ

∑
I

[
(αi

I)
2

(
B′′(dIJ) +

B′(dIJ)

dIJ

)
norm(dIJ)⊗ norm(dIJ)

]
= FT + ST,

(17)
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where FT denotes the ’first term’ and ST the ’second term’.
Since the dIJ to active barrier energy is actually transformed to d̂IJ = dIJ −ξ when considering thickness

modeling, such linear transform does change derivative and hessian, only changing the B′, B′′ terms. Then
this d will go through our mapping function and get ⌊d⌋ = εξ as minimal separation. In such mapping, we

literally consider d as a calulated coefficient free of zi (so that there will be no ∂f(d)
∂d exist in the Chain Rule).

Although this analyical representation of Eq. (17) can be calculated to get L =
∥∥∇2

zi
B
∥∥
2
, such process

will be unnecessarily time costing. We choose to estimate an upper bound of
∥∥∇2

zi
B
∥∥
2
. As

∥∥∇2
zi
B
∥∥
2
≤

∥FT∥2 + ∥ST∥2, we will look inside to these terms each by each.
From FT , we have:

∥FT∥2 ≤

∣∣∣∣∣µ∑
I

(αi
I)

2B
′

d
+ 1

∣∣∣∣∣ · ∥I∥2
≤

∣∣∣∣∣µ∑
I

(αi
I)

2B
′

d
+ 1

∣∣∣∣∣
<

∣∣∣∣∣µ∑
I

(αi
I)

2B
′

d

∣∣∣∣∣+ |1|

≤

∣∣∣∣∣µ∑
I

αi
I

B′

d

∣∣∣∣∣+
∣∣∣∣∣ d̂

⌊d⌋

∣∣∣∣∣ ( since 0 ≤ αi
I ≤ 1 and 0 < d < d̂ )

≤ µα0

∣∣∣∣ B′

⌊d⌋

∣∣∣∣+ d̂

⌊d⌋
( here denotes α0 :=

⌈∑
I

αi
I

⌉
)

≤ 1

⌊d⌋

(
µα0

⌈
|B′(d)|

⌉
+ d̂
)
=:
⌈
∥FT∥2

⌉
.

(18)

Although the ∥ST∥2 can also get an upper bound µα0

(
⌈|B′|⌉
⌊d⌋ + ⌈B′′⌉

)
through similar deduction, how-

ever, this upper bound possess too large expansion, since ’=’ can only be reached when all αi
I = 1 and dIJ

are paralleled, because of the existence of ∥
∑

I norm(dIJ)⊗ norm(dIJ)∥2. A too large expansion will make
the estimation of Lipschitz constant L expanded and yet make the step length unnecessarily get smaller, so
that the convergence process will be unnecessarily slow.

We will simply abandon the ∥ST∥2 term, since ∥FT∥2 has already provided enough expansion in esti-
mation of L and thus will give a enough step length upper bound. So that the estimation of L become
L ≤

∥∥∇2
zi
B
∥∥
2
≤
⌈
∥FT∥2

⌉
. Then we have 1/L ≥ 1/

⌈
∥FT∥2

⌉
.

From Theo. (3) and Eq. (18), then we have:

0 < λ ≤ 1/L

which means λ ≤
⌊
1/L

⌋
=

εξ

µα0

⌈
|B′(d)|

⌉
+ d̂

.
(19)

This condition has a more intuitive illustration, i.e., requiring the maximum position change at each iteration
of each vertex no greater than minimal separation εξ, i.e., maxi ∥λgi∥2 ≤ εξ.
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